
501:  L INUX OPERATING  SYSTEM 
(LOS)  

UNIT  3  :  SHELL  SCRIPTING  IN 
L INUX 

 

  

TYBCA (Sem –  5 )  1 

 

SR 

NO. 

NAME PAGE 

No. 

3.1 Creating and Executing Shell Scripts (nano, vi, ./script.sh) 2 

3.2 Shell Metacharacters and Operators 3 

3.2.1 Filename Expansion (wildcards: *, ?, []) 3 

3.2.2 Input/Output Redirection (>, >>, <) 3 

3.2.3 Pipes (|) 4 

3.2.4 Command Substitution ($(...), ...) 4 

3.3 Control Flow Structures (if-else, case, for, while, until) 6 

3.4 Logical Operators (&&, ||, !) 12 

3.5 test and [ ] command for Condition Testing (file, numeric, string) 13 

3.6 Arithmetic Operations (expr, $(( ))) 16 

 

 

 

 

 

 

 

 

 

 

 



501:  L INUX OPERATING  SYSTEM 
(LOS)  

UNIT  3  :  SHELL  SCRIPTING  IN 
L INUX 

 

  

TYBCA (Sem –  5 )  2 

 

 

3.1 Creating and Executing Shell Scripts 

A shell script is simply a text file containing a series of commands that the Linux shell can 

execute. Think of it like a recipe for your computer. 

How to Create a Script (using vi): 

You will use the vi text editor to write your scripts. 

1. Open your terminal. 

2. Type vi my_script.sh and press Enter. This will open the vi editor. 

Note: Defult is command mode need to go in insert mode 

3. Press i (for "insert" mode) to start typing. 

4. Type your commands inside the editor. 

5. To save and exit: Press Esc (to exit insert mode), then type :wq (write and quit), 

and press Enter. 

Example Script (hello.sh): 

Let's create a simple script that prints "Hello, Shell Scripting!" 

1. Open vi hello.sh. 

2. Press i to enter insert mode. 

3. Add these two lines: 

Bash 

#!/bin/bash 

echo "Hello, Shell Scripting!" 

o #!/bin/bash: This is called a "shebang." It tells your system which shell 

interpreter to use to run the script (in this case, bash). Always put this at the 

very top of your script. 

o echo "Hello, Shell Scripting!": This command simply prints the text inside 

the quotes to your terminal. 

 

4. Press Esc to exit insert mode. 

5. Type :wq and press Enter to save and quit. 



501:  L INUX OPERATING  SYSTEM 
(LOS)  

UNIT  3  :  SHELL  SCRIPTING  IN 
L INUX 

 

  

TYBCA (Sem –  5 )  3 

 

How to Execute a Script: 

Used sh command to run the script 

Ex : sh hello.sh 

What you'll see: 

Hello, Shell Scripting! 

3.2 Shell Metacharacters and Operators 

These are special characters and symbols that have specific meanings in the shell, helping 

you do powerful things. 

3.2.1 Filename Expansion (Wildcards)  

Wildcards are special characters you use to match patterns in filenames. They're super 

useful for selecting multiple files at once. 

• * (Asterisk): Matches any sequence of characters (including no characters). 

o Example: ls *.txt will list all files ending with .txt. 

o Example: rm photo*.jpg will delete all JPEG files starting with "photo". 

• ? (Question Mark): Matches any single character. 

o Example: ls file?.txt will match file1.txt, fileA.txt, but not file10.txt. 

• [ ] (Square Brackets): Matches any one of the characters inside the brackets. You 

can also specify a range. 

o Example: ls [abc]file.txt will match afile.txt, bfile.txt, cfile.txt. 

o Example: ls [0-9]report.pdf will match 1report.pdf, 2report.pdf, etc. 

Note: if we want to use meta characters as normal characters, we should use ‘\’ before the 

character. 

3.2.2 Input/Output Redirection (I/O Redirection) 

Normally, commands take input from your keyboard (standard input) and display output 

on your screen (standard output). Redirection lets you change where the input comes from 

or where the output goes. 

• > (Redirect Standard Output/Output Redirection): Sends the command's output to a 

file. If the file exists, it will be  overwritten. 



501:  L INUX OPERATING  SYSTEM 
(LOS)  

UNIT  3  :  SHELL  SCRIPTING  IN 
L INUX 

 

  

TYBCA (Sem –  5 )  4 

 

           Example: ls -l > file_list.txt 

       This will save the detailed list of files (ls -l) into a new file called file_list.txt. If 

file_list.txt already exists, its contents will be replaced. 

• >> (Append Standard Output/ Append Redirection): Sends the command's output to 

a file, adding it to the end if the file already exists. If the file doesn't exist, it creates 

it. 

Example: echo "Another line" >> file_list.txt 

• This will add "Another line" to the end of file_list.txt without deleting its existing 

content. 

• < (Redirect Standard Input/ Input Redirection): Takes input for a command from a 

file instead of the keyboard. 

          Example: wc -l < file_list.txt 

• wc -l counts lines. This command will count the lines in file_list.txt as if you typed 

its content directly. 

3.2.3 Pipes (|)  

Pipes let you connect commands by sending the output of one command as the input to 

another command. Think of it as a conveyor belt passing goods from one machine to the 

next. 

• Example: ls -l | grep "txt" 

o ls -l lists files in detail. 

o | takes the output of ls -l and feeds it as input to grep. 

o grep "txt" searches for lines containing "txt". 

o Result: This command will show you only the lines from ls -l that contain 

"txt", effectively listing only .txt files from the detailed output. 

3.2.4 Command Substitution ($())  

Command substitution allows you to use the output of a command as part of another 

command. Which means execute one command inside another command. 

• Example: echo "Today's date is: $(date)" 

o $(date) will run the date command. 



501:  L INUX OPERATING  SYSTEM 
(LOS)  

UNIT  3  :  SHELL  SCRIPTING  IN 
L INUX 

 

  

TYBCA (Sem –  5 )  5 

 

o The output of the date command (e.g., "Fri Jul 18 08:05:07 AM IST 2025") 

will then replace $(date) in the echo command. 

o Result: Today's date is: Fri Jul 18 08:05:07 AM IST 2025 (the date will be 

your current date and time). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



501:  L INUX OPERATING  SYSTEM 
(LOS)  

UNIT  3  :  SHELL  SCRIPTING  IN 
L INUX 

 

  

TYBCA (Sem –  5 )  6 

 

3.3 Control Flow Structures 

These structures allow your script to make decisions and repeat actions, making them 

much more powerful and dynamic. 

if-else : 

The if-else statement allows your script to execute different blocks of code based on 

whether a condition is true or false. 

• Syntax:  

Bash 

if [ condition ]; then 

    # Commands to execute if condition is true 

elif [ condition ]; then 

 # Commands to execute if condition is true 

else 

    # Commands to execute if condition is false 

fi 

• Example: Check if a file exists. 

1. Open vi check_file.sh. 

2. Press i to enter insert mode. 

3. Add these lines: 

Bash 

#!/bin/bash 

FILE="my_file.txt" 

 

if [ -f "$FILE" ]; then 

    echo "$FILE exists." 

else 

    echo "$FILE does not exist." 



501:  L INUX OPERATING  SYSTEM 
(LOS)  

UNIT  3  :  SHELL  SCRIPTING  IN 
L INUX 

 

  

TYBCA (Sem –  5 )  7 

 

fi 

▪ [ -f "$FILE" ]: This is a condition that checks if $FILE is a regular file. 

4. Press Esc, then type :wq and Enter. 

5. chmod +x check_file.sh 

6. ./check_file.sh 

• Try creating my_file.txt with touch my_file.txt and running it again to see the 

different output. 

Case: 

The case statement is useful when you have multiple possible values for a variable and 

want to run different commands for each value. It's like a cleaner if-else if-else chain. 

• Syntax:  

Bash 

case $variable in 

    pattern1) 

        # Commands for pattern1 

        ;; 

    pattern2) 

        # Commands for pattern2 

        ;; 

    *) 

        # Default commands (if no pattern matches) 

        ;; 

esac 

• Example: Greet based on a fruit choice. 

1. Open vi fruit_greeter.sh. 

2. Press i to enter insert mode. 

3. Add these lines: 

Bash 



501:  L INUX OPERATING  SYSTEM 
(LOS)  

UNIT  3  :  SHELL  SCRIPTING  IN 
L INUX 

 

  

TYBCA (Sem –  5 )  8 

 

#!/bin/bash 

read -p "Enter your favorite fruit (apple/banana/orange): " FRUIT 

 

case $FRUIT in 

    apple) 

        echo "Apples are crisp and delicious!" 

        ;; 

    banana) 

        echo "Bananas are great for energy!" 

        ;; 

    orange) 

        echo "Oranges are full of Vitamin C!" 

        ;; 

    *) 

        echo "That's an interesting choice!" 

        ;; 

esac 

▪ read -p "..." FRUIT: This prompts the user and stores their input in the 

FRUIT variable. 

4. Press Esc, then type :wq and Enter. 

5. chmod +x fruit_greeter.sh 

6. ./fruit_greeter.sh (try entering "apple", "banana", "orange", or something 

else). 

for loop : 

The for loop allows you to repeat a set of commands for each item in a list. 

• Syntax:  

Bash 

for item in list_of_items;  



501:  L INUX OPERATING  SYSTEM 
(LOS)  

UNIT  3  :  SHELL  SCRIPTING  IN 
L INUX 

 

  

TYBCA (Sem –  5 )  9 

 

do 

    # Commands to execute for each item 

done 

• Example: Process multiple files. 

1. Open vi file_processor.sh. 

2. Press i to enter insert mode. 

3. Add these lines: 

Bash 

#!/bin/bash 

for FILE in doc1.txt doc2.pdf image.jpg; 

 do 

    echo "Processing $FILE..." 

    # You could add commands here like: 

    # cp "$FILE" /backup/ 

done 

4. Press Esc, then type :wq and Enter. 

5. chmod +x file_processor.sh 

6. ./file_processor.sh 

 

• Example (numeric range): 

1. Open vi counter.sh. 

2. Press i to enter insert mode. 

3. Add these lines: 

Bash 

#!/bin/bash 

for i in {1..5};  

do 

    echo "Counting: $i" 



501:  L INUX OPERATING  SYSTEM 
(LOS)  

UNIT  3  :  SHELL  SCRIPTING  IN 
L INUX 

 

  

TYBCA (Sem –  5 )  10 

 

done 

▪ {1..5} expands to 1 2 3 4 5. 

4. Press Esc, then type :wq and Enter. 

5. chmod +x counter.sh 

6. ./counter.sh 

while loop : 

The while loop repeatedly executes commands as long as a condition remains true. 

• Syntax:  

Bash 

while [ condition ];  

do 

    # Commands to execute as long as condition is true 

done 

• Example: Countdown timer. 

1. Open vi countdown.sh. 

2. Press i to enter insert mode. 

3. Add these lines: 

#!/bin/bash 

COUNT=5 

while [ $COUNT -gt 0 ]; do 

    echo "Countdown: $COUNT" 

    sleep 1 # Wait for 1 second 

    COUNT=$((COUNT - 1)) # Decrease COUNT by 1 

done 

echo "Blast off!" 

▪ [ $COUNT -gt 0 ]: Checks if the value of COUNT is greater than 0. 

▪ sleep 1: Pauses the script for 1 second. 

▪ COUNT=$((COUNT - 1)): This is how you do arithmetic in shell 

scripts. 



501:  L INUX OPERATING  SYSTEM 
(LOS)  

UNIT  3  :  SHELL  SCRIPTING  IN 
L INUX 

 

  

TYBCA (Sem –  5 )  11 

 

4. Press Esc, then type :wq and Enter. 

5. chmod +x countdown.sh 

6. ./countdown.sh 

until loop : 

The until loop is the opposite of while. It repeatedly executes commands as long as a 

condition remains false. It stops when the condition becomes true. 

• Syntax:  

until [ condition ];  

do 

    # Commands to execute as long as condition is false 

done 

• Example: Wait for a file to appear. 

1. Open vi wait_for_file.sh. 

2. Press i to enter insert mode. 

3. Add these lines: 

Bash 

#!/bin/bash 

FILE="report.log" 

echo "Waiting for $FILE to appear..." 

until [ -f "$FILE" ]; do 

    sleep 5 # Check every 5 seconds 

done 

echo "$FILE has appeared! Processing..." 

4. Press Esc, then type :wq and Enter. 

5. chmod +x wait_for_file.sh 

6. ./wait_for_file.sh (In another terminal, create report.log using touch report.log 

and observe wait_for_file.sh). 

 



501:  L INUX OPERATING  SYSTEM 
(LOS)  

UNIT  3  :  SHELL  SCRIPTING  IN 
L INUX 

 

  

TYBCA (Sem –  5 )  12 

 

3.4 Logical Operators  

These operators combine multiple conditions to create more complex decision-making in 

your scripts. 

• && (AND operator): Both conditions must be true for the whole expression to be 

true. 

o Example: if [ -f "file.txt" ] && [ -w "file.txt" ]; then echo "File exists and is 

writable."; fi 

▪ This checks if file.txt exists AND if it's writable. 

• || (OR operator): At least one of the conditions must be true for the whole 

expression to be true. 

o Example: if [ -f "file1.txt" ] || [ -f "file2.txt" ]; then echo "At least one file 

exists."; fi 

▪ This checks if file1.txt exists OR file2.txt exists (or both). 

• ! (NOT operator): Reverses the truth value of a condition. If a condition is true,  

! makes it false, and vice-versa. 

               Example: if ! [ -d "my_directory" ]; then  

echo "my_directory does not exist."; 

 fi 

▪ [ -d "my_directory" ] is true if the directory exists and ! makes it true if 

the directory does not exist. 

 

 

 

 

 

 

 



501:  L INUX OPERATING  SYSTEM 
(LOS)  

UNIT  3  :  SHELL  SCRIPTING  IN 
L INUX 

 

  

TYBCA (Sem –  5 )  13 

 

3.5 test and [ ] command for Condition Testing 

The test command (and its shorter alias [ ]) is used to evaluate conditions. We've seen it 

already in  

if and while statements. 

Common Tests: 

• File Tests: 

o -f file: True if file is a regular file. 

o -d directory: True if directory is a directory. 

o -e file/directory: True if file or directory exists. 

o -r file: True if file is readable. 

o -w file: True if file is writable. 

o -x file: True if file is executable. 

o -nt file : check for new file (newer than). 

o -ot file: check for old file (older than). 

• Numeric Tests: 

o num1 -eq num2: True if num1 is equal to num2. 

o num1 -ne num2: True if num1 is not equal to num2. 

o num1 -gt num2: True if num1 is greater than num2. 

o num1 -ge num2: True if num1 is greater than or equal to num2. 

o num1 -lt num2: True if num1 is less than num2. 

o num1 -le num2: True if num1 is less than or equal to num2. 

• String Tests: 

o "string1" = "string2": True if string1 is equal to string2. 

o "string1" != "string2": True if string1 is not equal to string2. 

o -z "string": True if string is empty (zero length). 

o -n "string": True if string is not empty. 

Example: 

1. Open vi conditions.sh. 

2. Press i to enter insert mode. 

3. Add these lines: 

Bash 

#!/bin/bash 

NUM1=10 



501:  L INUX OPERATING  SYSTEM 
(LOS)  

UNIT  3  :  SHELL  SCRIPTING  IN 
L INUX 

 

  

TYBCA (Sem –  5 )  14 

 

NUM2=20 

 

if [ $NUM1 -lt $NUM2 ]; then 

    echo "$NUM1 is less than $NUM2" 

fi 

STRING1="hello" 

STRING2="world" 

 

if [ "$STRING1" != "$STRING2" ]; then 

    echo "$STRING1 and $STRING2 are different." 

fi 

4. Press Esc, then type :wq and Enter. 

5. chmod +x conditions.sh 

6. ./conditions.sh 

Important Note on [ ]: 

• Always put spaces around the brackets [ condition ]. 

• Always quote your variables inside [ ] (e.g., "$FILE", "$STRING1") to prevent 

issues if they contain spaces or are empty. 

 

 

 

 

 

 

 

 

 

 



501:  L INUX OPERATING  SYSTEM 
(LOS)  

UNIT  3  :  SHELL  SCRIPTING  IN 
L INUX 

 

  

TYBCA (Sem –  5 )  15 

 

3.6 Arithmetic Operations (expr, $(())) 

Shell scripts can also perform basic math! 

expr command 

The expr command is older but still works for simple arithmetic. 

• Example: 

1. Open vi arithmetic_expr.sh. 

2. Press i to enter insert mode. 

3. Add these lines: 

Bash 

#!/bin/bash 

RESULT=$(expr 5 + 3) 

echo "5 + 3 = $RESULT" 

 

# Note: For multiplication, you need to escape the asterisk or quote it 

PRODUCT=$(expr 4 \* 2) 

echo "4 * 2 = $PRODUCT" 

Notice the backslash before * for multiplication (\*). This is because * is a wildcard 

in the shell and needs to be escaped so expr sees it as a multiplication operator. 

4. Press Esc, then type :wq and Enter. 

5. chmod +x arithmetic_expr.sh 

6. ./arithmetic_expr.sh 

$(()) (Arithmetic Expansion)  

This is the more modern and preferred way to do arithmetic in Bash. It's simpler and more 

flexible. 

• Syntax: $(( expression ))  

• Example: 

1. Open vi arithmetic_bash.sh. 

2. Press i to enter insert mode. 

3. Add these lines: 



501:  L INUX OPERATING  SYSTEM 
(LOS)  

UNIT  3  :  SHELL  SCRIPTING  IN 
L INUX 

 

  

TYBCA (Sem –  5 )  16 

 

Bash 

#!/bin/bash 

A=10 

B=5 

 

SUM=$((A + B)) 

echo "Sum: $SUM" 

 

DIFFERENCE=$((A - B)) 

echo "Difference: $DIFFERENCE" 

 

PRODUCT=$((A * B)) 

echo "Product: $PRODUCT" 

 

DIVISION=$((A / B)) 

echo "Division: $DIVISION" 

 

MODULO=$((A % B)) # Remainder after division 

echo "Modulo: $MODULO" 

▪ You don't need expr or special escaping for operators like * inside 

$(()). 

▪ You can directly use variable names without the $ inside the $(()) for 

readability, but using $ (e.g., $A) is also correct. 

4. Press Esc, then type :wq and Enter. 

5. chmod +x arithmetic_bash.sh 

6. ./arithmetic_bash.sh 

 


